UTILIZATION OF A SNP MICROARRAY FOR THE STUDY OF MULTIPLE MYELOMA PATIENTS: NOVEL FINDINGS AND BETTER STRATIFICATION OF PATIENTS

S Schepis, P Papenhausen and S Schwartz, Laboratory Corporation of America® Holdings
OBJECTIVES

• Delineate the usefulness of array as a diagnostic and prognostic tool in multiple myeloma
• Determine array effectiveness of the array if…
 – FISH is normal
 – FISH is abnormal
• Demonstrate the occurrence of copy-neutral loss of heterozygosity (CN-LOH)
• Determine the best way to approach laboratory testing for multiple myeloma
INTRODUCTION

• MM testing for most laboratories
 – Chromosome analysis
 • ~30 abnormal
 – FISH on enriched cells using multiple probes
 • ~80% abnormal
• Should consider array as 1st tier test in conjunction with MM translocation
 – Use on enriched cells
 – Reduce large number of FISH probes currently used
• 413 MM patients in this study

[INTERNAL DATA – MARCH, 2017]
MM Prognostic Factors

- Good prognostic factors
 - Hyperdiploidy
 - t(11;14)

- Poor prognostic factors
 - Hypodiploidy
 - 1q gain; 17p deletion
 - T(4;14); t(14;16)

- Array provides additional important prognostic information
OVERALL FINDINGS

• Array detected...
 – Abnormalities in 99.9% of samples
 – Additional abnormalities in 99.8% samples abnormal by FISH
 – Additional poor prognostic factors not detectable by standard FISH
 • 8q duplications (MYC)
 • 12p deletions (ETV6)
 • 16q deletions (MAF)
 • CN-LOH
 • Chromothripsis
 – Higher than expected frequency of copy-neutral loss of heterozygosity

[INTERNAL DATA – MARCH, 2017]
HYPERDIPLOIDY

• Hyperdiploidy - good prognosis
 – Only hyperdiploidy: 38 (~18%)
 – Additional findings not thought to be poor prognostic factors: 72 (~34%)

• Hyperdiploidy - with poor prognostic factors
 – 98 cases (~47%)
 • 1q gain
 • 8q gain (MYC)
 • 12p deletion (ETV6)
 • 16q deletion (MAF)
 • Chromothriipsis
 • CN-LOH

• Most common chromosomes found to be hyperdiploid by array
 – 3, 5, 7, 9, 11, 15, 19

[INTERNAL DATA – MARCH, 2017]
11;14 TRANSLOCATION

- 11;14 translocation – good prognosis
 - Array additional poor prognostic factors
 - 21 out of 51 cases (~41%)
 - 8q gain (MYC)
 - 12p deletion (ETV6)
 - 16q deletion (MAF)
 - CN-LOH
 - Chromothripsis

[INTERNAL DATA – MARCH, 2017]
CHROMOTHRIIPSIS

• Considered if 10 or greater gains or losses in chromosome/chromosome arm
• Believed to be associated with poor prognosis
• However may mask other poor prognostic factors
• No specific chromosome involvement
• Seen in ~6% of multiple myeloma patients

[INTERNAL DATA – MARCH, 2017]
MULTIPLE MYELOMA – CHROMOTHRIPSIS 1Q

[INTERNAL DATA – MARCH, 2017]
COPY-NEUTRAL LOSS OF HETEROZYGOSITY

• Seen in ~28% cases studied
• Exact significance – not always clear
• In some cases – poor prognostic factor
• As detailed yesterday – different from that seen in other hematological malignancies
 – More often whole chromosome involved
PATIENT WITH MM

- 67 year old female
- Chromosomes: No growth
- FISH – FGFR3/IGH rearrangement, MYC gain, CCND1 gain
- Array
 - Numerous abnormalities
 - Chromothripsis –3q and chromosome 8
 - Homozygous deletion – 11q
 - Complex clone

[INTERNAL DATA – MARCH, 2017]
CHROMOSOME 11 – NUMEROUS DELETIONS & HOMOZYGOUS DELETION – BIRC3

[INTERNAL DATA – MARCH, 2017]
SECOND DISEASE

• Some patients present with unclear findings and a diagnosis of myeloma/MDS
 – Can be studied with both positive and negative CD138 separated fractions

• Some cases two diseases detected
 – Myeloma and MDS
 – Myeloma and CLL

• Some case no myeloma – only MDS or CLL

• Some can be confusing if not studied separately

[INTERNAL DATA – MARCH, 2017]
SECOND DISEASE

• Positive
 – Multiple abnormalities consistent with more aggressive disease
 • MYC gains
 • CN-LOH 17p

• Negative
 – 7q deletion
 – 20q deletion
 – Consistent with MDS

• But what if not separated?
KARYOVIEW – NEGATIVE FRACTION

[INTERNAL DATA – MARCH, 2017]
BENEFITS OF ARRAY

• Advantages
 – Detection of abnormalities not available by FISH and not seen in chromosome analysis
 • Copy-neutral loss of heterozygosity
 • Chromothripsis
 – Ability to provide better prognostic information
 – Provides a mechanistic understanding of the formation of various abnormalities and underlying importance
CHALLENGES OF ARRAY

• Challenges
 – Cannot pick up balanced translocations
 • Important in MM testing
 • FISH needs to be done in conjunction
 – Sensitivity of the array
 • Have been able to detect 7-15% mosaicism
 • Dependent on size, location, type (del/dup)
 • Measure – using smooth signal (determine %)
 – Dependent on the enrichment
 • Percentage of plasma cells in patient
 • Age of the sample at time of enrichment
 – Detection of second disease
 • Can two diseases confuse diagnosis

[INTERNAL DATA – MARCH, 2017]
PATIENTS WITH MM - APPROACH

• Should consider array as 1st tier test in conjunction with MM translocation
 – Use on enriched cells
 – Reduce large number of FISH probes currently used
 – Must do translocations probes – but other probes can be replace more effectively by array analysis

[INTERNAL DATA – MARCH, 2017]
ACKNOWLEDGEMENTS

LabCorp – Directors/Counselors
- Peter Papenhausen
- Stuart Schwartz
- Jim Tepperberg
- Inder Gadi
- Rachel Burnside
- Karen Phillips
- Hiba Risheg
- Rao Potluri
- Katie Rudd
- Justin Schleede
- Romela Pasion
- Huong Cabral
- Jennifer Shafer
- Laura Kline
- Margriet Johansen
- Sharon Molinari
- Michelle Pierce

LabCorp – Array Lab
- Carolyn Bullen
- Paul Colacicco
- Shorne Cox
- Jeanne Emery
- Zach Gillespie
- Bonnie Haines
- Joeven Nonato
- Nathan Raynor
- Zachary Riscica
- Keli Rodriguez
- Savanna Schepis
- Jesse Soileau
- Jessica Whaley-Davis
- Brian Williford
- Danielle Wright

LabCorp – FISH Lab
- Holly Goode
- Barbara Purvis
- Edison Chua
- Tracy Hummel